
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Mar 18 IC24 Data Handbook

1998 Apr 28

74LVC109

FEATURES

- Wide supply voltage range of 1.2 to 3.6 V
- In accordance with JEDEC standard no. 8-1A.
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Output capability: standard
- I_{CC} category: flip-flops

DESCRIPTION

The 74LVC109 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT109.

The 74LVC109 is a dual positive-edge triggered J \overline{K} -type flip-flop featuring individual J, \overline{K} inputs, clock (CP) inputs, set (\overline{S}_D) and reset (\overline{R}_D) inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

The J and \overline{K} inputs control the state changes of the flip-flops as described in the mode select function table. The J and \overline{K} inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation. The J \overline{K} design allows operation as a D-type flip-flop by tying the J and \overline{K} inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	$\begin{array}{l} Propagation \ delay \\ nCP \ to \ nQ, \ n\overline{Q} \\ n\overline{S}_D \ to \ nQ, \ n\overline{Q} \\ n\overline{R}_D \ to \ nQ, \ n\overline{Q} \end{array}$	C _L = 50 pF; V _{CC} = 3.3 V	4.0 4.5 4.5	ns
f _{max}	Maximum clock frequency		250	MHz
CI	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per flip-flop	$V_{I} = GND \text{ to } V_{CC}^{1}$	27	pF

NOTE:

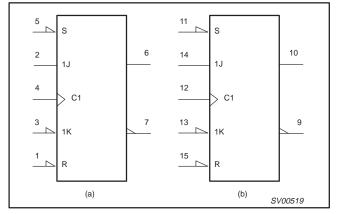
1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) P_D = C_{PD} × V_{CC}² × f_i + Σ (C_L × V_{CC}² × f_o) where: f_i = input frequency in MHz; C_L = output load capacity in pF; f₀ = output frequency in MHz; V_{CC} = supply voltage in V;

 $\Sigma (C_L \times V_{CC}^2 \times f_0) =$ sum of the outputs.

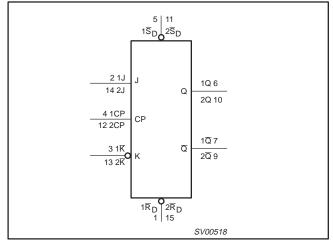
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic SO	-40°C to +85°C	74LVC109 D	74LVC109 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +85°C	74LVC109 DB	74LVC109 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +85°C	74LVC109 PW	74LVC109PW DH	SOT403-1

PIN CONFIGURATION

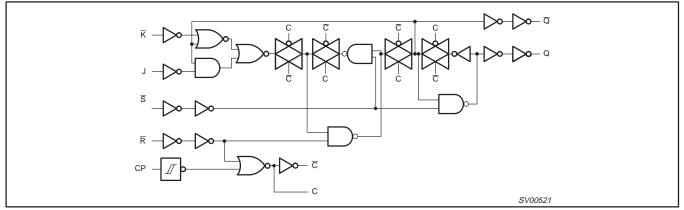

п.р. Г		16 ^V CC
1J 2		15 2 ^R D
1 K 3		14 2J
1CP 4		13 2K
18 _D 5		12 2CP
1Q 6		11 2 ⁵ D
1Q 7		10 2Q
GND 8		9 2 0
	S	SV00517

PIN DESCRIPTION


PIN NUMBER	SYMBOL	FUNCTION
1, 15	$1\overline{R}_{D}, 2\overline{R}_{D}$	Asynchronous reset input (active LOW)
2, 14, 3, 13	1J, 2J, 1 K , 2 K	Synchronous inputs; flip-flops 1 and 2
4, 12	1CP, 2CP	Clock input (LOW-to-HIGH, edge-triggered)
5, 11	$1\overline{S}_{D,}2\overline{S}_{D}$	Asynchronous set inputs (active LOW)
6, 10	1Q, 2Q	True flip-flop outputs
7, 9	1 <u>Q</u> , 2 <u>Q</u>	Complement flip-flop outputs
8	GND	Ground (O V)
16	V _{CC}	Positive supply voltage

74LVC109

LOGIC SYMBOL (IEEE/IEC)



LOGIC SYMBOL

FUNCTIONAL DIAGRAM 5 $1\overline{S}_{D}$ o S_D 1J 2___ 1Q 6 1 Q 1CP 4_ CP FF1 1Q 7 1K Q 3_ R_D $1R_D$ 1_ 11 2Sr S_D 14 2J 2Q 10 .1 Q 12 2CP CP FF2 2Q9 13 2K Q R_D 15 2RD SV00520

LOGIC DIAGRAM

74LVC109

FUNCTION TABLE

OPERATING MODES	INPUTS					OUTPUTS		
OPERATING MODES	nS _D	nR _D	nCP	nJ	nK	nQ	nQ	
Asynchronous set	L	Н	Х	Х	Х	Н	L	
Asynchronous reset	Н	L	Х	Х	Х	L	н	
Undetermined	L	L	Х	Х	Х	н	н	
Toggle	Н	Н	\uparrow	h	I	q	q	
Load "0" (reset)	Н	Н	\uparrow	1	I	Ĺ	Н	
Load "1" (set)	Н	Н	\uparrow	h	h	Н	L	
Hold "no change"	Н	Н	\uparrow	I	h	q	q	

NOTES:

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

q = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition.

X = don't care

 \uparrow = LOW-to-HIGH CP transition

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWIDUL	FARAIVIETER	CONDITIONS	MIN	MAX	UNIT
)/	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	v
VI	DC input voltage range		0	5.5	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	V _{CC} = 1.2 to 2.7V V _{CC} = 2.7 to 3.6V	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER CONDITIONS		RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	$V_{I} < 0$	-50	mA
VI	DC input voltage	Note 2	-0.5 to +5.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	± 50	mA
Vo	DC output voltage	Note 2	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	± 50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC109

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

			L	LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -				
			MIN	TYP ¹	MAX	1	
M		$V_{CC} = 1.2V$	V _{CC}			v	
V _{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0			1 `	
M		V _{CC} = 1.2V			GND	V	
V _{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8	1 `	
V _{OH}		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5				
	HIGH level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -100\mu A$	V _{CC} -0.2	V _{CC}		v	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.6			l v	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24mA$	V _{CC} -1.0			1	
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$			0.40		
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		GND	0.20	V	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24mA$			0.55	1	
ł	Input leakage current	V _{CC} = 3.6V; V _I = 5.5V or GND		±0.1	±5	μA	
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$		0.1	10	μA	
ΔI_{CC}	Additional quiescent supply current per input pin	V_{CC} = 2.7V to 3.6V; $V_{\rm I}$ = V_{CC} –0.6V; $I_{\rm O}$ = 0		5	500	μΑ	

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS

GND = 0 V; t_r = t_f $\leq~$ 2.5 ns; CL = 50 pF; RL = 500 $\Omega;$ Tamb = -40°C to +85°C

					LIM	ITS			
SYMBOL PARAMETER		WAVEFORM	VAVEFORM $V_{CC} = 3.3V \pm 0.3V$			V _{CC} = 2.7V			UNIT
			MIN	TYP ¹	МАХ	MIN	TYP NO TAG	МАХ	
t _{PHL} /t _{PLH}	Propagation delay nCP to nQ, nQ	Figures 1, 3		4.3	7.5			8.5	ns
t _{PLH}	Propagation delay nS _D to nQ nR _D to nQ	Figures 2, 3		4.5	8.0			9.0	ns
t _{PHL}	Propagation delay nS _D to nQ nR _D to nQ	Figures 2, 3		5.2	9.0			10	ns
t _W	Clock pulse width HIGH or LOW	Figure 1	3.3	2.0					ns
t _W	Set or reset pulse width HIGH or LOW	Figure 2	3.0						ns
t _{rem}	Removal time nS _{D,} nR _D to nCP	Figure 2	3.0						ns
t _{su}	Set-up time nJ, nK to CP	Figure 1	2.5						ns
t _h	Hold time nJ, nK to nCP	Figure 1	2.0						ns
f _{max}	Maximum clock pulse frequency	Figure 1	150	225					MHz

NOTE:

1. These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

74LVC109

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC} \ge 2.7$ V; V_M = 0.5 × V_{CC} at $V_{CC} < 2.7$ V. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

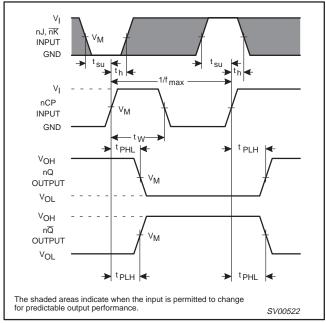


Figure 1. Clock (nCP) to output (nQ, nQ) propagation delays, the clock pulse width, the nJ and nK to nCP set-up, the nCP to nJ, nK hold times and the maximum clock pulse frequency.

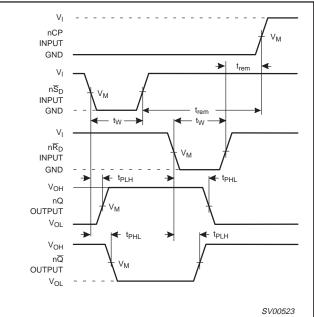
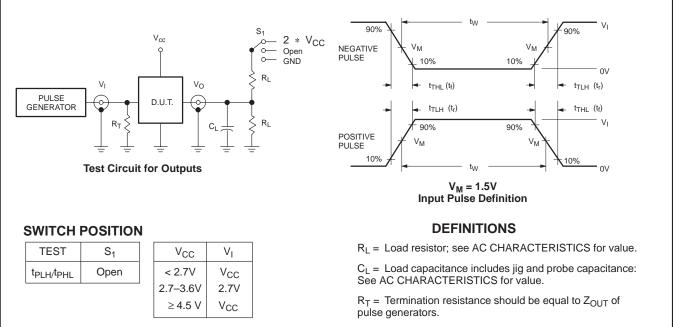
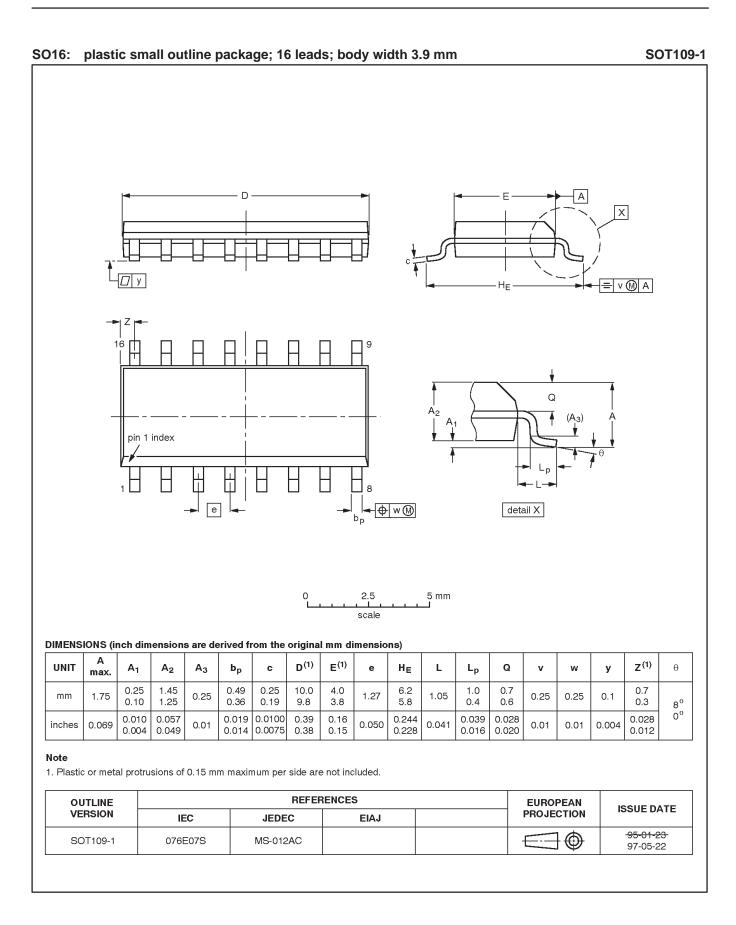



Figure 2. Set $(n\overline{S}_D)$ and reset $(n\overline{R}_D)$ input to output $(nQ, n\overline{Q})$ propagation delays, the set and reset pulse widths and the $n\overline{R}_D$, $n\overline{S}_D$ to nCP removal time.


SV00904

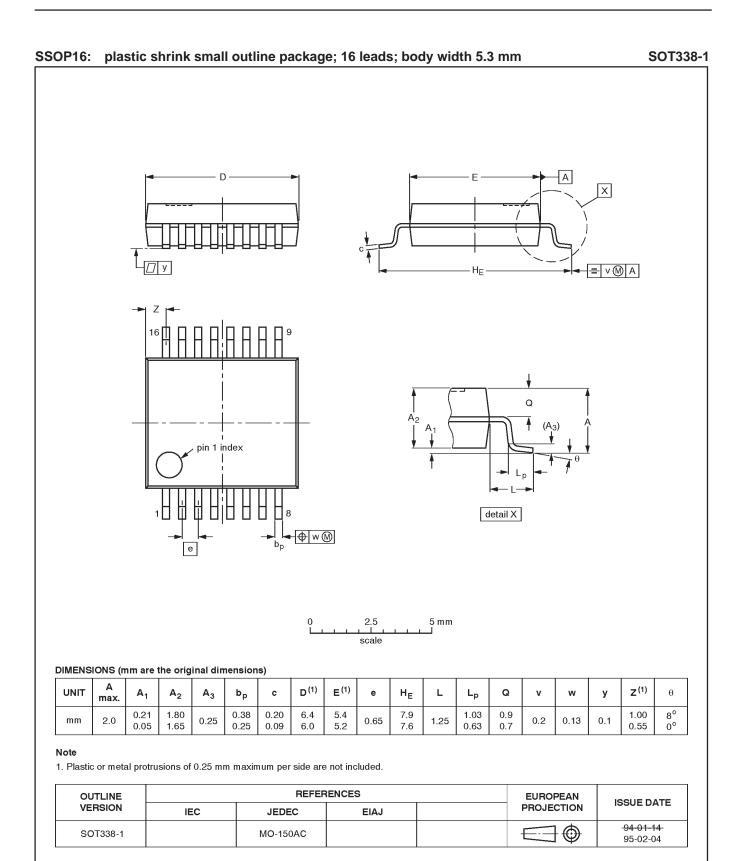
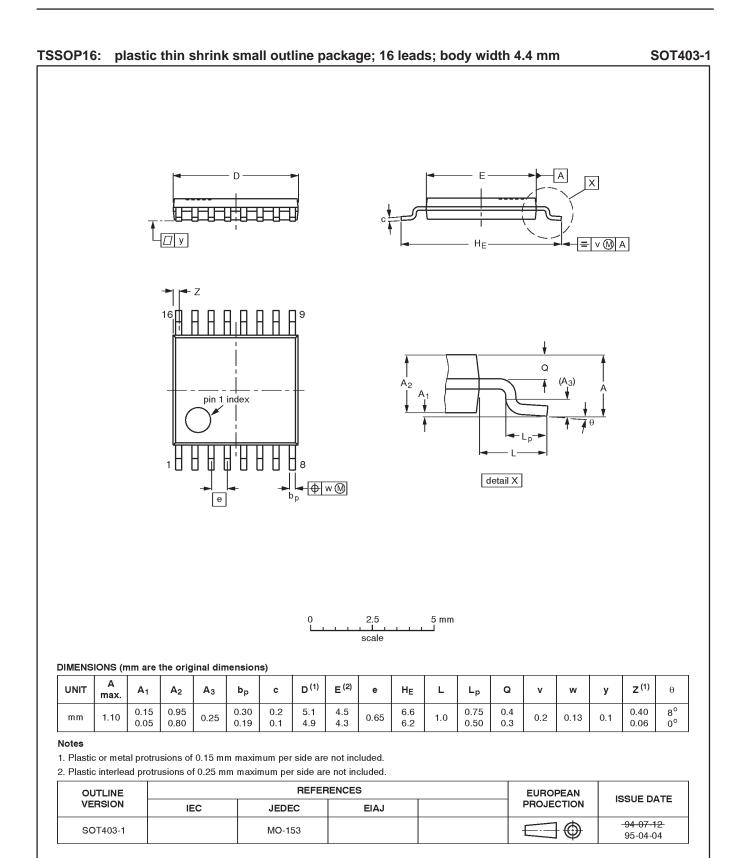

TEST CIRCUIT

Figure 3. Load circuitry for switching times.


74LVC109

74LVC109

74LVC109

74LVC109

	DEFINITIONS						
Data Sheet Identification	Definition						
Objective Specification Formative or in Design This data sheet contains the design target or goal specifications for product dev may change in any manner without notice.		This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification Preproduction Product		This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification Full Production		This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04489

Let's make things better.

